

Real-time, On-line, Low Impact, Temporal Pattern
Matching
Doron Drusinsky
Time-Rover, Inc., 11425 Charsan Ln., Cupertino, CA 95014, USA, doron@time-
rover.com, www.time-rover.com
Naval Postgraduate School, Monterey, CA, USA, ddrusins@nps.navy.mil

Abstract. A temporal pattern matching technique based on formal specifications
using Linear Time Temporal Logic (LTL) is described. The method is based on Remote
Execution and Monitoring (REM) of LTL assertions. Unlike verification applications
where the formal specification is used to locate errors in a corresponding program,
REM is not concerened with correctness but rather with temporal pattern detection.
Unlike comparable techniques, such as SQL in temporal databases, the method is
completely on-line, and does not require storage of the input sequence. This makes
REM especially suitable for low-impact, real-time, temporal pattern matching of
potentially never ending applications such as security monitoring and financial
temporal business rule checking.

Introduction
Temporal Logic is a special branch of modal logic that investigates the notion of time
and order. In [7], Pnueli suggested using Linear-Time Propositional Temporal Logic
(LTL) for reasoning about concurrent programs. Since then, several researchers have
used LTL to state and prove correctness of concurrent programs, protocols, and
hardware (e.g., [5], [6]).

Linear-Time Temporal Logic (LTL) is an extension of propositional logic where, in
addition to the propositional logic operators there are four future-time operators and
four dual past time operators: always in the future (always in the past), eventually, or
sometime in the future (sometime in the past), Until (Since), and next cycle (previous
cycle).
Metric Temporal Logic (MTL) was suggested by Chang, Pnueli, and Manna as a
vehicle for the verification of real time systems [1]. MTL extends LTL by supporting
the specification of relative time and real time constraints. All four LTL future time
operators (Eventually, Always, Until, Next) can be characterized by relative time and
real time constraints specifying the duration of the temporal operator.

Run-time Execution and Monitoring (REM) is a method of tracking the behavior of
an underlying application, such as an embedded system, financial database, or airline
reservation systems. REM methods range from simple print-statement logging
methods to run-time tracking of complete formal requirements (e.g. written in
LTL/MTL) for verification purposes. Indeed, first applications of REM where for
verification applications, where REM was and is used to track how formal
specification requirements are conformed to by the actual executing system.

Recent adaptation of REM methods enable run-time monitoring for non-verification
purposes, such as temporal business rule checking and temporal security rule
checking. This adaptation uses REM methods as on-line, real-time, and low-impact
temporal pattern matchers.

This paper describes the DBRover, an on-line, real-time, low impact REM tool based
on LTL and MTL, and its application to temporal pattern detection for financial and
security applications.

Online Temporal Pattern Detection
Consider the following two airline security related temporal pattern rules, both
concerned with detecting a foreign national male passenger with a student visa flying
to the Harrisburg International Airport near the Three Mile Island nuclear power
plant:

R1. Detect such a passenger if he has traveled to the Middle East at least once within
a year of obtaining his student visa.

R2. Detect such a passenger if he has traveled to the Middle East at least once within
a year of obtaining his student visa and he received two or more direct deposits
from non-US banks within the last year.

Both rules describe temporal patterns that contain potentially discernable elements
from an airline security system operating automatically and in real-time. The two
primary methods for performing such temporal pattern detection are off-line and on-
line, as described in the sequel.

The Federal Aviation Administration (FAA) has an automated profiling system
originally termed Computer Assisted Passenger Screening (CAPS) [5] that relies upon
the data in each Passenger Name Record. This profiling system is being upgraded to
access a more extensive range of data. CAPPS-II will profile airline passengers
based on secret criteria in order to identify potential terrorists. Personal information
about passengers may additionally include that from INS, law enforcement, and
customs.. Having such history information stored in the system, or in constituent
subsystems, enables SQL based implementation of a temporal pattern rule such as R1.
We call such an implementation off-line because it relies on storing and querying
historical information. An off-line solution induces the following three impact
consequences.

1. Temporal, historical, information is stored within the system (e.g. within CAPPS-
II and/or its constituent subsystems).

2. Temporal and non-temporal pattern detection is initiated by the security related
query, querying the constituent resources at will. We regard this as high-impact
solution because a temporal query is initiated from outside the original scope of
the queried system, thereby impacting the performance of the queried system. For
example, the INS subsystem of CAPPS-II being impacted by repeated external
queries from CAPPS-II proper, which sooner or later will degrade the INS

system performance. Performance degradation will occur because of the actual
query processing forced on the INS subsystem and because of the fact that with
time, temporal queries can query monotonically increasing data-sets of historical
data.

In addition to performance issues, CAPPS and its constituent subsystems need to
agree on a shared data representation for merging query results from multiple
subsystems (e.g. merging INS and law enforcement query results).

This paper is concerned with low-impact, on-line temporal pattern detection. It uses
run-time temporal logic monitoring (REM) to detect temporal patterns without using
historical data (i.e., it is on-line), and without querying the underlying application
(i.e., it is low-impact). The only communicated information it requires from the
underlying application (e.g. CAPPS-II constituent subsystems) are Boolean messages
for basic propositions such as deposit of more than $1000 was made to account of
SSN=222 11 2222.

While pattern rule R1 described earlier is programmable within the suggested
CAPPS-II framework, R2 requires extension which includes banking information.
Such an extension however, will not lend itself to off-line temporal pattern detection
methods, for the following reasons:

1. The banking data systems only store historical/temporal information for a limited
duration (e.g. 3 months). The industry is unlikely to make any significant change
to this policy.

2. Banking data systems are not likely to permit high-impact, CAPPS-II initiated,
queries, because of the performance consequences discussed earlier as well as
their own security need to be in full control over the content of any such query.

In contrast, a REM temporal pattern detection method, being on-line and low-impact,
can be used in tandem with CAPPS-II, while supporting extensions that support rules
such as R2.

The Temporal Rover and DBRover
The Temporal Rover [3] is a code generator whose input is a Java, C, C++, or HDL
source code program, where LTL/MTL assertions are embedded as source code
comments. The Temporal Rover parser converts this program file into a new file,
which is identical to the original file except for the assertions that are now
implemented in source code. The following example contains an embedded MTL
assertion for a Traffic Light Controller (TLC) written using the Temporal Rover
syntax asserting that for 100 milliseconds, whenever light is red, camera should be
on:
void tlc(int Color_Main, boolean CameraOn) {

… /* Traffic Light Controller functionality */
/* TRBegin
TRClock{C1=getTimeInMillis()} // get time from the OS
TRAssert{ Always({Color_Main == RED} Implies

 Eventually_C1<1000_{CameraOn == 1})
 } =>

// Customizable user actions
{printf("SUCCESS\n");printf("FAIL\n");printf("DONE!\n");}
TREnd */
} /* end of tlc */

The TemporalRover generates code that replaces the embedded LTL/MTL assertion
with real C, C++, Java, or HDL code which executes in-process, i.e., as part of the
underlying application. The Temporal Rover is also used for formal specification
based exception handling [4].

The DBRover [5] is a REM version of the TemporalRover whereby assertions are
monitored on a remote machine, using HTTP, sockets, or serial communication with
the underlying target application. The DBRover includes a graphical temporal rule
editor, a temporal rule simulator, and a temporal rule execution engine based on the
TemporalRover code generator.

The DBRover is concerned with the following main objectives:

1. Monitoring on-line, namely no postmortem processing is used. A counter
example would be to store all events in a database and use a SQL based
method to query those tables at a later time. The motivation for this
requirement is that no expected termination time for the underlying
application (e.g. security application) should be assumed. With no expected
termination time the size of the stored information will be monotonically
increasing, which is unacceptable in most cases. The algorithm chosen for
the DBRover is fully on-line and does not require monotonically increasing
storage space.

2. Low impact. The DBRover does not interrogate the underlying application
(e.g. the banking system in the R2 example). Rather, it listens to simple
events pertaining to basic propositions, such as deposit-occurred, or
balance<0 which are sent to the DBRover by the underlying application via
sockets or http.

3. Rule flexibility. Pattern specification rules, being domain specific and
evolving, change frequently and are often written by domain experts, not
programmers. The DBRover uses a GUI for LTL pattern rule entry; rules can
be changed in the UI and automatically mounted to be monitored, all with
almost no change to the application being monitored.

4. Powerful rules language. For the same reasons discussed earlier, pattern
specification rules need to be able to capture real-life patterns and concerns,
such as real-time constrains, all while being close to natural language. LTL
satisfy this requirement; a large body of research points to its expressiveness
and usefulness as a specification language. MTL adds real-time constraints
to LTL specifications.

The DBRover listens to sockets, http, or serial communication messages sent to it
from the main application (APP), such as a banking application. Messages are
organized in streams that represent sequences of events or conditions in APP. Every
cycle, such as whenever the bank account balance changes, the APP send 1 bit per
basic proposition (e.g. deposit of more than $500 made to account) and possibly an ID
of the underlying entity being tracked (e.g. SSN or bank account number) indicating
whether that proposition is true or false in that particular cycle. The DBRover will
repeatedly re-evaluate the temporal pattern rule, either in a single instance, or using
multi-instancing (e.g.., one instance per SSN or bank account number). An
administrative part of the DBRover can be programmed to send out e-mail’s or to
invoke custom actions (e.g. external, user written program or script) based on the
success or failure of chosen rules.

References
1. E. Chang, A. Pnueli, Z. Manna - Compositional Verification of Real-Time Systems,

Proc. 9'th IEEE Symp. On Logic In Computer Science, 1994, pp. 458-465.

2. Fobes, J. L. Computer Assisted Passenger Screening (CAPS), DOT/FAA/AR-96/38,
1996.

3. D. Drusinsky, The Temporal Rover and ATG Rover. Proc. Spin2000 Workshop,
Springer Lecture Notes in Computer Science, 1885, pp. 323-329.

4. D. Drusinsky, Formal Specs Can Handle Exceptions, CMP Embedded Developers
Journal, Nov. 2001, pp., 10-14.

5. B. T. Hailpern, S. Owicki - Modular Verification of Communication Protocols. IEEE
Trans of comm. COM-31(1), No. 1, 1983, pp. 56-68.

6. Z. Manna, A. Pnueli - Verification of Concurrent Programs: Temporal Proof
Principles, Proc. of the Workshop on Logics of Programs, Springer LNCS, 1981 pp.
200-252.

7. A. Pnueli - The Temporal Logic of Programs, Proc. 181977 IEEE Symp.. on
Foundations of Computer Science, pp. 46-57.

	Introduction
	The Temporal Rover and DBRover
	References

